Overview of Cryptographic Techniques

1

Resources Used

- Lecture slides from Dr Ratan Guha CNT 6519 Wireless Security Forensics
- Cryptography and Network Security, Fourth Edition, by William Stallings
- Lecture slides for the textbook by Lawrie Brown
- Lecture slides by Henric Johnson, Blekinge Institute of Technology, Sweden

Outline

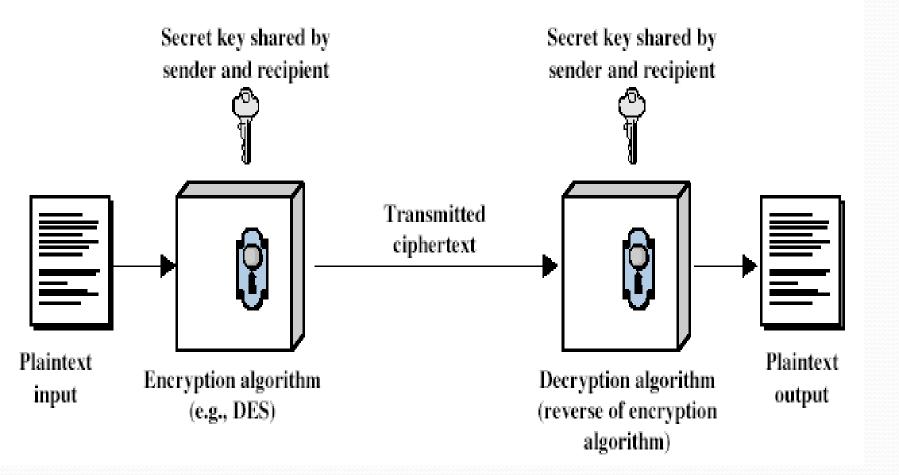
- Some Basic Terminology
- Conventional Encryption Principles
- Characteristics of Cryptographic Techniques
- Symmetric Encryption
- Classical Symmetric Encryption Algorithms
- Modern Symmetric Encryption Techniques

Some Basic Terminology

- plaintext original message
- ciphertext coded message
- **cipher** algorithm for transforming plaintext to ciphertext
- key info used in cipher known only to sender/receiver
- encipher (encrypt) converting plaintext to ciphertext
- decipher (decrypt) recovering ciphertext from plaintext
- **cryptography** study of encryption principles/methods
- cryptanalysis (codebreaking) study of principles/ methods of deciphering ciphertext without knowing key
- **cryptology** field of both cryptography and cryptanalysis

Conventional Encryption Principles

- An encryption scheme has five ingredients:
 - Plaintext
 - Encryption algorithm
 - Secret Key
 - Ciphertext
 - Decryption algorithm
- Security depends on the secrecy of the key, not the secrecy of the algorithm


Characteristics of Cryptographic Techniques

- Classified along three independent dimensions:
 - The type of operations used for transforming plaintext to ciphertext
 - The number of keys used
 - symmetric (single key)
 - asymmetric (two-keys, or public-key encryption)
 - The way in which the plaintext is processed

Symmetric Encryption

- or conventional / private-key / single-key
- sender and recipient share a common key
- all classical encryption algorithms are private-key
- was only type prior to invention of public-key in 1970's
- and by far most widely used

Symmetric Cipher Model

Requirements

- two requirements for secure use of symmetric encryption:
 - a strong encryption algorithm
 - a secret key known only to sender / receiver
- mathematically have:

 $Y = E_K(X) \quad [= E(K, X)]$ $X = D_K(Y) \quad [= D(K, Y)]$

- assume encryption algorithm is known
- implies a secure channel to distribute key

Brute Force Search

- always possible to simply try every key
- most basic attack, proportional to key size
- assume either know / recognize plaintext

Key Size (bits)	Number of Alternative Keys	Time required at 1 decryption/µs		Time required at 10 ⁶ decryptions/µs
32	$2^{32} = 4.3 \times 10^9$	2 ³¹ µs	= 35.8 minutes	2.15 milliseconds
56	$2^{56} = 7.2 \times 10^{16}$	2 ⁵⁵ µs	= 1142 years	10.01 hours
128	$2^{128} = 3.4 \times 10^{38}$	2 ¹²⁷ µs	$= 5.4 \times 10^{24}$ years	5.4×10^{18} years
168	$2^{168} = 3.7 \times 10^{50}$	2 ¹⁶⁷ µs	$= 5.9 \times 10^{36}$ years	5.9×10^{30} years
26 characters (permutation)	$26! = 4 \times 10^{26}$	$2 imes 10^{26} \mu s$	$= 6.4 \times 10^{12} \text{ years}$	6.4×10^6 years